Degradation of plastic wastes to commercial chemicals and monomers under visible light

Sci Bull (Beijing). 2023 Jul 30;68(14):1522-1530. doi: 10.1016/j.scib.2023.06.024. Epub 2023 Jun 26.

Abstract

Plastics are playing an incrementally extensive and irreplaceable role in human life, but with alarming cyclic unsustainability. Numerous attempts have been undertaken to recycle plastics, among which chemical recycling from waste plastics back to chemicals and monomers has attracted great attention. Herein, the depolymerization of nine types of plastics to commercial chemicals and monomers was achieved under ambient conditions via synergetic integrated uranyl-photocatalysis, which contains a process for converting five kinds of mixed plastics into a value-added product. The degradation processes were depicted in terms of variation in scanning electron microscopy imaging, distinction in the X-ray diffraction pattern, alteration in water contact angle, and dynamic in molecular weight distribution. Single electron transfer, hydrogen atom transfer, and oxygen atom transfer were synergistically involved in uranyl-photocatalysis, which were substantiated by mechanistic studies. Relying on flow system design, the chemical recycling of plastics was feasible for kilogram-scale degradation of post-consumer-waste polyethylene terephthalate bottles to commercial chemicals, displaying a promising practical application potential in the future.

Keywords: High compatibility; Kilogram-scale; Mixed-plastics degradation; Uranyl-photocatalysis.