When cytochrome P-450 in phenobarbital-induced rat liver microsomes was destroyed by 2-isopropyl-4-pentenamide (AIA) in vitro, 50% of the degraded heme was recovered as heme-derived products irreversibly bound to microsomal proteins. In contrast, less than 50% of the degraded heme was accounted for as N-alkylated porphyrins. Furthermore, 64% of the irreversibly bound products was bound specifically to a 54-kD form of cytochrome P-450. Several other compounds which have been reported to destroy cytochrome P-450 by forming N-alkylated porphyrins also produced heme-derived protein adducts. These findings indicate that the formation of heme-derived protein adducts may represent an important pathway for the irreversible degradation of cytochrome P-450 by many xenobiotics.