Non-neuronal cholinergic system delays cardiac remodelling in type 1 diabetes

Heliyon. 2023 Jun 19;9(6):e17434. doi: 10.1016/j.heliyon.2023.e17434. eCollection 2023 Jun.

Abstract

Aims: Type 1 diabetes mellitus (T1DM) is associated with increased risk of cardiovascular disease (CVD) and mortality. The underlying mechanisms for T1DM-induced heart disease still remains unclear. In this study, we aimed to investigate the effects of cardiac non-neuronal cholinergic system (cNNCS) activation on T1DM-induced cardiac remodelling.

Methods: T1DM was induced in C57Bl6 mice using low-dose streptozotocin. Western blot analysis was used to measure the expression of cNNCS components at different time points (4, 8, 12, and 16 weeks after T1DM induction). To assess the potential benefits of cNNCS activation, T1DM was induced in mice with cardiomyocyte-specific overexpression of choline acetyltransferase (ChAT), the enzyme required for acetylcholine (Ac) synthesis. We evaluated the effects of ChAT overexpression on cNNCS components, vascular and cardiac remodelling, and cardiac function.

Key findings: Western blot analysis revealed dysregulation of cNNCS components in hearts of T1DM mice. Intracardiac ACh levels were also reduced in T1DM. Activation of ChAT significantly increased intracardiac ACh levels and prevented diabetes-induced dysregulation of cNNCS components. This was associated with preserved microvessel density, reduced apoptosis and fibrosis, and improved cardiac function.

Significance: Our study suggests that cNNCS dysregulation may contribute to T1DM-induced cardiac remodelling, and that increasing ACh levels may be a potential therapeutic strategy to prevent or delay T1DM-induced heart disease.

Keywords: Acetylcholine; Apoptosis; Cardiac function; Cardiac non-neuronal cholinergic system; Cardiovascular disease; Type 1 diabetes mellitus.

Publication types

  • Retracted Publication