Bioinformatics and Structural Analysis of Antigenic Variation in the Hemagglutinin Gene of the Influenza A(H1N1)pdm09 Virus Circulating in Shiraz (2013 to 2015)

Microbiol Spectr. 2023 Aug 17;11(4):e0463022. doi: 10.1128/spectrum.04630-22. Epub 2023 Jul 12.

Abstract

Circulating influenza A virus provided an excellent opportunity to study the adaptation of the influenza A(H1N1)pdm09 virus to the human host. Particularly, due to the availability of sequences taken from isolates, we could monitor amino acid changes and the stability of mutations that occurred in hemagglutinin (HA). HA is crucial to viral infection because it binds to ciliated cell receptors and mediates the fusion of cells and viral membranes; because antibodies that bind to HA may block virus entry to the cell, this protein is subjected to high selective pressure. In this study, the locations of mutations in the structures of mutant HA were analyzed and the three-dimensional (3D) structures of these mutations were modeled in I-TASSER. Also, the location of these mutations was visualized and studied using Swiss PDB Viewer software and the PyMOL Molecular Graphics System. The crystal structure of the HA from A/California/07/2009 (3LZG) was used for further analysis. The new noncovalent bond formations in mutant luciferases were analyzed via WHAT IF and PIC, and protein stability was evaluated in the iStable server. We identified 33 and 23 mutations in A/Shiraz/106/2015 and A/California/07/2009 isolates, respectively; some mutations are located on the antigenic sites of Sa, Sb, Ca1, Ca2, and Cb HA1 and the fusion peptide of HA2. The results show that with the mutation some interactions are lost and new interactions are formed with other amino acids. The results of the free-energy analysis suggested that these new interactions have a destabilizing effect, which needs confirmation experimentally. IMPORTANCE Due to the fact that the mutations that occurred in the influenza virus HA cause the instability of the protein produced by the virus and antigenic changes and the escape of the virus from the immune system, the mutations that occurred in A/Shiraz/1/2013 were investigated in terms of energy level and stability. The mutations located in a globular portion of the HA are S188T, Q191H, S270P, K285Q, and P299L. On the other hand, the E374K, E46K-B, S124N-B, and I321V mutations are located in the stem portion of the HA (HA2). The change V252L mutation eliminates interactions with Ala181, Phe147, Leu151, and Trp153 and forms new interactions with Gly195, Asn264, Phe161, Met244, Tyr246, Leu165, and Trp167 which can change the stability of the HA structure. The K166Q mutation, which is located within the antigenic site Sa, causes the virus to escape from the immune response.

Keywords: H1N1; antigenic variation; hemagglutinin; influenza A.

MeSH terms

  • Antigenic Variation*
  • Hemagglutinin Glycoproteins, Influenza Virus* / chemistry
  • Hemagglutinin Glycoproteins, Influenza Virus* / genetics
  • Humans
  • Influenza A Virus, H1N1 Subtype* / chemistry
  • Influenza, Human* / virology
  • Iran
  • Models, Molecular
  • Mutation
  • Protein Stability

Substances

  • H1N1 virus hemagglutinin
  • Hemagglutinin Glycoproteins, Influenza Virus