Frontoparietal network homogeneity as a biomarker for mania and remitted bipolar disorder and a predictor of early treatment response in bipolar mania patient

J Affect Disord. 2023 Oct 15:339:486-494. doi: 10.1016/j.jad.2023.07.033. Epub 2023 Jul 16.

Abstract

Objective: Previous studies have revealed the frontoparietal network (FPN) plays a key role in the imaging pathophysiology of bipolar disorder (BD). However, network homogeneity (NH) in the FPN among bipolar mania (BipM), remitted bipolar disorder (rBD), and healthy controls (HCs) remains unknown. The present study aimed to explore whether NH within the FPN can be used as an imaging biomarker to differentiate BipM from rBD and to predict treatment efficacy for patients with BipM.

Methods: Sixty-six patients with BD (38 BipM and 28 rBD) and 60 HCs participated in resting-state functional magnetic resonance imaging and neuropsychological tests. Independent component analysis and NH analysis were applied to analyze the imaging data.

Results: Relative to HCs, BipM patients displayed increased NH in the left middle frontal gyrus (MFG), and rBD patients displayed increased NH in the right inferior parietal lobule (IPL). Compared to rBD patients, BipM patients displayed reduced NH in the right IPL. Furthermore, support vector machine results exhibited that NH values in the right IPL could distinguish BipM patients from rBD patients with 69.70 %, 57.89 %, and 91.67 % for accuracy, sensitivity, and specificity, respectively, and support vector regression results exhibited a significant association between predicted and actual symptomatic improvement based on the reduction ratio of the Young` Mania Rating Scale total scores (r = 0.466, p < 0.01).

Conclusion: The study demonstrated distinct NH values in the FPN could serve as a valuable neuroimaging biomarker capable of differentiating patients with BipM and rBD, and NH values of the left MFG as a potential predictor of early treatment response in patients with BipM.

Keywords: Biomarker; Bipolar disorder; Frontoparietal network; Network homogeneity; Neuroimaging.