Quantification of orally administered chondroitin sulfate oligosaccharides in human plasma and urine

Glycobiology. 2023 Oct 29;33(9):755-763. doi: 10.1093/glycob/cwad054.


Chondroitin sulfate has been widely administered orally to improve knee osteoarthritis. Chondroitin sulfate also has various biological properties, such as anti-inflammatory, immunomodulatory, anti-oxidative, and antitumor activity. However, chondroitin sulfate absorption in the digestive system and bioavailability remains controversial owing to its large molecular weight. In this study, we aimed to evaluate the absorption of chondroitin sulfate oligosaccharides, depolymerized chondroitin sulfate with low molecular weight, in oral administration to humans. Four types of chondroitin sulfate with varying molecular weight [chondroitin sulfate tetrasaccharide (MW. 980), CSOS-1 (MW. 1,500), CSOS-2 (MW. 2,800), and HMWCS (MW. 70,000)] were orally administered and quantified in plasma and urine. Exogenous chondroitin sulfate in these samples was quantified using a high-performance liquid chromatography system equipped with a fluorescence detector. Quantitative changes of administered chondroitin sulfate tetrasaccharide showed similar patterns in plasma and urine, therefore it was presumed that the amount of exogenous chondroitin sulfate excreted in urine reflects its quantitative profile in blood. Considering urinary exogenous chondroitin sulfate as a parameter of intestinal chondroitin sulfate absorption, urinary contents of orally administered chondroitin sulfate with varying molecular weight were compared. Consequently, the amount of urinary exogenous chondroitin sulfate in 24 h after administration was higher in the chondroitin sulfate oligosaccharides group than that in the high molecular weight chondroitin sulfate group. Additionally, in the molecular weight distribution, urinary exogenous chondroitin sulfate after chondroitin sulfate oligosaccharides administration showed a lower content of chondroitin sulfate oligosaccharides with a higher molecular weight than that observed before administration. In summary, our results demonstrated for the first time that lower molecular weight of chondroitin sulfate is more efficiently absorbed through the digestive tract in human, and the improvement of its bioavailability is expected.

Keywords: chondroitin sulfate; oligosaccharide; oral administration; plasma; urine.

MeSH terms

  • Administration, Oral
  • Chondroitin Sulfates* / chemistry
  • Humans
  • Molecular Weight
  • Oligosaccharides*


  • Chondroitin Sulfates
  • Oligosaccharides