Individual and Combined Cytotoxic Effects of Co-Occurring Fumonisin Family Mycotoxins on Porcine Intestinal Epithelial Cell

Foods. 2023 Jun 30;12(13):2555. doi: 10.3390/foods12132555.

Abstract

Human health is seriously threatened by mycotoxin contamination, yet health risk assessments are typically based on just one mycotoxin, potentially excluding the additive or competitive interactions between co-occurring mycotoxins. In this investigation, we evaluated the individual or combined toxicological effects of three fumonisin-family B mycotoxins: fumonisin B1 (FB1), fumonisin B2 (FB2), and fumonisin B3 (FB3), by using porcine intestinal epithelial cells (IPEC). IPEC cells were exposed to various concentrations (2.5-40 μM) for 48 h, and a cell counting kit (CCK8) was used to determine cell vitality. Firstly, we discovered that they might inhibit cell viability. Additionally, the cytotoxicity of FB1 was significantly greater than that of FB2 and FB3. The results also indicated that the combinations of FB1-FB2, FB2-FB3, and FB1-FB2-FB3 showed synergistically toxicological effects at the ID10-ID50 levels and antagonistic effects at the ID75-ID90 levels. In addition, the FB1-FB3 exposure was also synergistic at the ID10-ID25 level. We also found that myriocin and resveratrol alleviated the cytotoxicity induced by fumonisin in IPEC cells. In all, this study may contribute to the determination of legal limits, the optimization of risk assessment for fumonisins in food and feed, and the development of new methods to alleviate fumonisin toxicity.

Keywords: combined toxicity; control strategy; fumonisins; gastrointestinal toxicity; risk assessment.