LC-MS/MS-Based Serum Metabolomics and Transcriptome Analyses for the Mechanism of Augmented Renal Clearance

Int J Mol Sci. 2023 Jun 21;24(13):10459. doi: 10.3390/ijms241310459.

Abstract

Augmented Renal Clearance (ARC) refers to the increased renal clearance of circulating solute in critically ill patients. In this study, the analytical research method of transcriptomics combined with metabolomics was used to study the pathogenesis of ARC at the transcriptional and metabolic levels. In transcriptomics, 534 samples from 5 datasets in the Gene Expression Omnibus database were analyzed and 834 differential genes associated with ARC were obtained. In metabolomics, we used Ultra-Performance Liquid Chromatography-Quadrupole Time-of-Flight Mass Spectrometry to determine the non-targeted metabolites of 102 samples after matching propensity scores, and obtained 45 differential metabolites associated with ARC. The results of the combined analysis showed that purine metabolism, arginine biosynthesis, and arachidonic acid metabolism were changed in patients with ARC. We speculate that the occurrence of ARC may be related to the alteration of renal blood perfusion by LTB4R, ARG1, ALOX5, arginine and prostaglandins E2 through inflammatory response, as well as the effects of CA4, PFKFB2, PFKFB3, PRKACB, NMDAR, glutamate and cAMP on renal capillary wall permeability.

Keywords: augmented renal clearance; metabolomics; transcriptome; vancomycin.

MeSH terms

  • Arginine / genetics
  • Chromatography, High Pressure Liquid / methods
  • Chromatography, Liquid / methods
  • Gene Expression Profiling
  • Humans
  • Metabolomics* / methods
  • Phosphofructokinase-2
  • Tandem Mass Spectrometry*

Substances

  • Arginine
  • PFKFB2 protein, human
  • Phosphofructokinase-2