Accumulating evidence indicates that gut microbiota closely correlates with the tumorigenesis of digestive system cancers (DSCs). However, whether the causality between gut microbiota and DSCs exists is unknown. Genome-wide association study (GWAS) summary statistics for gut microbiota and DSCs and the bidirectional two-sample Mendelian randomization (MR) analysis were utilized to assess the causality between gut microbiota and DSCs. Sensitivity analyses were performed to evaluate the robustness of our results. We found that the genus Eggerthella (OR = 0.464, 95%CI: 0.27 to 0.796, p = 0.005) was negatively associated with the risk of gastric cancer. The genetically predicted genus Lachnospiraceae FCS020 group (OR = 0.607, 95%CI: 0.439 to 0.84, p = 0.003) correlated with a lower risk of colorectal cancer, and genus Turicibacter (OR = 0.271, 95%CI: 0.109 to 0.676, p = 0.005) was a protective factor for liver cancer. In the reverse MR, DSCs regulated the relative abundance of specific strains of gut microbiota. We comprehensively screened the association between gut microbiota and DSCs using a bidirectional two-sample MR analysis and identified the causality between several microbial taxa and DSCs. Our discoveries are beneficial for the development of novel microbial markers and microbiota-modifying therapeutics for DSC patients.
Keywords: Mendelian randomization; causality; digestive system cancers; gut microbiota.