Ratiometric Inclusion of Fibroblasts Promotes Both Castration-Resistant and Androgen-Dependent Tumorigenic Progression in Engineered Prostate Cancer Tissues

Adv Healthc Mater. 2023 Dec;12(32):e2301139. doi: 10.1002/adhm.202301139. Epub 2023 Oct 31.

Abstract

To investigate the ratiometric role of fibroblasts in prostate cancer (PCa) progression, this work establishes a matrix-inclusive, 3D engineered prostate cancer tissue (EPCaT) model that enables direct coculture of neuroendocrine-variant castration-resistant (CPRC-ne) or androgen-dependent (ADPC) PCa cells with tumor-supporting stromal cell types. Results show that the inclusion of fibroblasts within CRPC-ne and ADPC EPCaTs drives PCa aggression through significant matrix remodeling and increased proliferative cell populations. Interestingly, this is observed to a much greater degree in EPCaTs formed with a small number of fibroblasts relative to the number of PCa cells. Fibroblast coculture also results in ADPC behavior more similar to the aggressive CRPC-ne condition, suggesting fibroblasts play a role in elevating PCa disease state and may contribute to the ADPC to CRPC-ne switch. Bulk transcriptomic analyses additionally elucidate fibroblast-driven enrichment of hallmark gene sets associated with tumorigenic progression. Finally, the EPCaT model clinical relevancy is probed through a comparison to the Cancer Genome Atlas (TCGA) PCa patient cohort; notably, similar gene set enrichment is observed between EPCaT models and the patient primary tumor transcriptome. Taken together, study results demonstrate the potential of the EPCaT model to serve as a PCa-mimetic tool in future therapeutic development efforts.

Keywords: PEG-fibrinogen biomaterials; androgen sensitivity; fibroblast cocultures; tumor microenvironments; tumor stroma.

MeSH terms

  • Androgens*
  • Castration
  • Cell Line, Tumor
  • Fibroblasts / metabolism
  • Humans
  • Male
  • Prostatic Neoplasms, Castration-Resistant* / genetics
  • Prostatic Neoplasms, Castration-Resistant* / metabolism
  • Prostatic Neoplasms, Castration-Resistant* / pathology

Substances

  • Androgens