Differences in regional vascular conductances in isolated dog lungs

J Appl Physiol (1985). 1986 Aug;61(2):530-8. doi: 10.1152/jappl.1986.61.2.530.

Abstract

The distribution of pulmonary blood flow is influenced by gravity, regional lung expansion, and hypoxic pulmonary vasoconstriction. However, these factors cannot completely explain the three-dimensional distribution of blood flow in the lung. The present study was designed to see whether anatomically related factors could contribute. Regional blood pressure vs. flow curves were determined in 100-230 small parenchymal samples (0.3-0.4 ml) from 12 isolated perfused dog lungs held at constant inflation pressure. In each region four blood flows were measured using radioactively labeled microspheres, and the four corresponding regional perfusion pressures were determined by correcting the measured perfusion pressure for hydrostatic effects. There were considerable differences in the slopes of the pressure vs. flow curves among lung regions. Dorso-caudal regions of the lung had higher vascular conductances than ventrocephalad regions, independent of the vertical orientation of the lung or the inflation volume during injections of microspheres. Thus the distributions of regional vascular conductances were related to the anatomic location and were not related to gravity, nor were they caused by nonuniformities in regional lung expansion or by hypoxic vasoconstriction or edema.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Animals
  • Blood Pressure
  • Dogs
  • In Vitro Techniques
  • Microspheres
  • Models, Cardiovascular
  • Pulmonary Circulation*
  • Vascular Resistance