Is pulmonary inflammation a valid predictor of particle induced lung pathology? The case of amorphous and crystalline silicas

Toxicol Lett. 2023 Jul 14:S0378-4274(23)00226-6. doi: 10.1016/j.toxlet.2023.07.012. Online ahead of print.

Abstract

Although inflammation is a normal and beneficial response, it is also a key event in the pathology of many chronic diseases, including pulmonary and systemic particle-induced disease. In addition, inflammation is now considered as the key response in standard settings for inhaled particles and a critical endpoint in OECD-based sub-acute/ chronic animal inhalation testing protocols. In this paper, we discuss that whilst the role of inflammation in lung disease is undeniable, it is when inflammation deviates from normal parameters that adversity occurs. We introduce the importance of the time course and in particular, the reversibility of inflammation in the progression towards tissue remodelling and neoplastic changes as commonly seen in rat inhalation studies. For this purpose, we used chronic inhalation studies with synthetic amorphous silicas (SAS) and reactive crystalline silica (RCS) as a source of data to describe the time-course of inflammation towards and beyond adversity. Whilst amorphous silicas induce an acute but reversible inflammatory response, only RCS induces a persistent, progressive response after cessation of exposure, resulting in fibrosis and carcinogenicity in rodents and humans. This suggests that the use of inflammation as a fixed endpoint at the cessation of exposure may not be a reliable predictor of particle-induced lung pathology. We therefore suggest extending the current OECD testing guidelines with a recovery period, that allows inflammation to resolve or progress into altered structure and function, such as fibrosis.

Keywords: Adversity; Biomarkers; Inflammation; Inhalation; Pulmonary toxicity; Resolution; Silica.