Voltage-clamp analysis of currents produced by glutamate and some glutamate analogues on horizontal cells isolated from the catfish retina

J Neurophysiol. 1986 Jul;56(1):19-31. doi: 10.1152/jn.1986.56.1.19.


Horizontal cells isolated from the catfish retina were exposed to radiolabeled glutamate, glycine, gamma-aminobutyric acid (GABA), and sucrose to determine if the enzymatic dissociation procedure altered the high-affinity uptake mechanism for GABA and generally reduced membrane selectivity. As in the intact retina, isolated cells could transport GABA but not the other substances. The horizontal cells were voltage clamped using a single low-resistance patch-type electrode. The acidic amino acid L-glutamate, and its analogues kainate and quisqualate, were applied to the cell by pressure ejection from a nearby pipette. All three agonists produced inward currents that reversed near O mV. Quisqualate produced a current with a similar time course as glutamate, but the time course of the response to kainate was faster. The agonists N-methyl-D-aspartate and L-aspartate had little effect on the membrane conductance. The current-to-voltage (I-V) relationship for all three agonists was nonlinear when the membrane potential was hyperpolarized. The nonlinearity was, at least in part, a result of the decreased response to the three agonists. Removal of Mg did not alter this nonlinear relationship. When the inward potassium rectifier was blocked with 100 microM Ba, the response to glutamate was increased compared with the control experiment before block by barium; however, the I-V relationship was still highly nonlinear. Thus glutamate block of the inward potassium current cannot account entirely for the nonlinear I-V. The increase in membrane permeability to specific ions in the presence of an agonist was determined by ion substitution experiments and measuring the shift in the reversal potential. The three agonists appear to increase the membrane permeability to cations but not to anions. The amino acid antagonists cis-2,3-piperidine dicarboxylic acid (PDA) and D-glutamyl glycine (DGG) were bath applied to test their ability to block the depolarizing effects of glutamate. DGG had no measureable effect at 100 microM concentration, whereas PDA reversibly reduced the glutamate response at 1 mM concentration although block was incomplete. Isolated horizontal cells responded to bath-applied glutamate in concentrations of 10-500 microM. In concentrations of glutamate greater than 50 microM, when the membrane potential was held at the resting potential, the inward current reached a maximum followed by a decrease to a steady-state level. This apparent time-dependent desensitization at high agonist concentrations was at least partially removed when Mg was removed from the bathing solution.(ABSTRACT TRUNCATED AT 400 WORDS)

Publication types

  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Animals
  • Autoradiography
  • Cell Separation
  • Dipeptides / pharmacology
  • Dose-Response Relationship, Drug
  • Electric Conductivity
  • Excitatory Amino Acid Antagonists
  • Fishes
  • Glutamates / pharmacology*
  • Pipecolic Acids / pharmacology
  • Retina / cytology
  • Retina / drug effects*


  • Dipeptides
  • Excitatory Amino Acid Antagonists
  • Glutamates
  • Pipecolic Acids
  • gamma-glutamylglycine
  • 2,3-piperidinedicarboxylic acid