Materials Space-Tectonics: Atomic-level Compositional and Spatial Control Methodologies for Synthesis of Future Materials

Angew Chem Int Ed Engl. 2023 Nov 13;62(46):e202307615. doi: 10.1002/anie.202307615. Epub 2023 Aug 7.

Abstract

Reactions occurring at surfaces and interfaces necessitate the creation of well-designed surface and interfacial structures. To achieve a combination of bulk material (i.e., framework) and void spaces, a meticulous process of "nano-architecting" of the available space is necessary. Conventional porous materials such as mesoporous silica, zeolites, and metal-organic frameworks lack advanced cooperative functionalities owing to their largely monotonous pore geometries and limited conductivities. To overcome these limitations and develop functional structures with surface-specific functions, the novel materials space-tectonics methodology has been proposed for future materials synthesis. This review summarizes recent examples of materials synthesis based on designing building blocks (i.e., tectons) and their hybridization, along with practical guidelines for implementing materials syntheses and state-of-the-art examples of practical applications. Lastly, the potential integration of materials space-tectonics with emerging technologies, such as materials informatics, is discussed.

Keywords: Hybridization; Inorganic Nanomaterial; Materials Space-Tectonics; Nanoarchitectures.

Publication types

  • Review