Combining 16S rRNA Sequencing and Metabolomics Data to Decipher the Interactions between Gut Microbiota, Host Immunity, and Metabolites in Diarrheic Young Small Ruminants

Int J Mol Sci. 2023 Jul 13;24(14):11423. doi: 10.3390/ijms241411423.

Abstract

Diarrhea is associated with gut microbiota, immunity, and metabolic alterations in goat kids and lambs. This study used 28 lambs (11 healthy and 17 diarrheic) and 20 goat kids (10 healthy and 10 diarrheic) to investigate the association between diarrhea occurrence and changes in gut microbiota, metabolism, and immunity in goat kids and lambs. The results revealed that Firmicutes, Proteobacteria, and Bacteroidetes were the dominant phyla in goat kids and lambs. In addition, Enterobacteriaceae and Lachnospiraceae families were identified in both diarrheic goat kids and lambs. Furthermore, functional prediction of microbiota showed that it was involved in cell motility and cancer pathways. The identified differential metabolites were implicated in the bile secretion pathway. Lambs had significant differences in immunoglobulin G (IgG), immunoglobulin M (IgM), interleukin-1β (IL-1β), and tumor necrosis factor-alpha (TNF-α) compared to goat kids. IgG and IL-1β were positively correlated to Patescibacteria, Clostridiaceae, and unclassified_Muribaculaceae in both diarrheic goat kids and lambs. In addition, weighted gene co-expression network analysis (WGCNA) revealed that the MEgreen module was positively associated with IgG, IgM, IL-1β, TNF-α, and triglyceride (TG). In conclusion, our results characterized the gut microbiota, metabolism, and immune status of lambs and goat kids suffering from diarrhea.

Keywords: 16S rRNA; immune; metabolome; ruminants; serum biochemistry.

MeSH terms

  • Animals
  • Diarrhea / microbiology
  • Gastrointestinal Microbiome*
  • Goats
  • Immunoglobulin G
  • Metabolomics
  • RNA, Ribosomal, 16S / genetics
  • Sheep
  • Tumor Necrosis Factor-alpha

Substances

  • RNA, Ribosomal, 16S
  • Tumor Necrosis Factor-alpha
  • Immunoglobulin G