Specific detection of fungicide thiophanate-methyl: A smartphone colorimetric sensor based on target-regulated oxidase-like activity of copper-doped carbon nanozyme

Biosens Bioelectron. 2023 Oct 1:237:115554. doi: 10.1016/j.bios.2023.115554. Epub 2023 Jul 26.

Abstract

Nanozyme-based colorimetric assays have shown great potential in the rapid and sensitive determination of pesticide residue in environment. However, the non-specific enzyme inhibition makes the assays generally lack of selectivity. In this study, we proposed a colorimetric sensing platform for the specific detection of the agricultural fungicide thiophanate-methyl (TM) based on its distinctive inhibitory effect on the nanozyme activity. Since TM contains the symmetric ethylenediamine- and bisthiourea-like groups, it displays strong affinity to the metal site, leading to a loss of the catalytic activity. Accordingly, a Cu-doped carbon nanozyme with excellent oxidase-like properties was designed, and the oxidation process of chromogenic substrate is promoted by Cu-induced generation of reactive oxygen species. Interestingly, the nanozyme activity can be directly and strongly restrained by TM, rather than other probably coexistent pesticides. Consequently, the as-proposed analytical method exhibits specific response toward TM and good linear relationship in the range of 0.2-15 μg mL-1 with a low limit of detection of 0.04 μg mL-1 (S/N = 3). Besides, a smartphone-assisted rapid detection was achieved through identifying the RGB value of the chromogenic system. This work provides a new nanozyme inhibition strategy for the specific detection of TM in environmental sample.

Keywords: Colorimetric assay; Direct nanozyme inhibition; Nanozyme; Oxidase-like activity; Specific TM detection.