Ribosome Heterogeneity in Development and Disease

bioRxiv [Preprint]. 2023 Jul 25:2023.07.25.550527. doi: 10.1101/2023.07.25.550527.

Abstract

The functional ribosome is composed of ∼80 ribosome proteins. With the intensity-based absolute quantification (iBAQ) value, we calculate the stoichiometry ratio of each ribosome protein. We analyze the ribosome ratio-omics (Ribosome R ), which reflects the holistic signature of ribosome composition, in various biological samples with distinct functions, developmental stages, and pathological outcomes. The Ribosome R reveals significant ribosome heterogeneity among different tissues of fat, spleen, liver, kidney, heart, and skeletal muscles. During tissue development, testes at various stages of spermatogenesis show distinct Ribosome R signatures. During in vitro neuronal maturation, the Ribosome R changes reveal functional association with certain molecular aspects of neurodevelopment. Regarding ribosome heterogeneity associated with pathological conditions, the Ribosome R signature of gastric tumors is functionally linked to pathways associated with tumorigenesis. Moreover, the Ribosome R undergoes dynamic changes in macrophages following immune challenges. Taken together, with the examination of a broad spectrum of biological samples, the Ribosome R barcode reveals ribosome heterogeneity and specialization in cell function, development, and disease.

One-sentence summary: Ratio-omics signature of ribosome deciphers functionally relevant heterogeneity in development and disease.

Publication types

  • Preprint