Carbonized Syndiotactic Polystyrene/Carbon Nanotube/MXene Hybrid Aerogels with Egg-Box Structure: A Platform for Electromagnetic Interference Shielding and Solar Thermal Energy Management

ACS Appl Mater Interfaces. 2023 Aug 23;15(33):39740-39751. doi: 10.1021/acsami.3c08176. Epub 2023 Aug 9.

Abstract

Functional materials for electromagnetic interference (EMI) shielding are a consistently hot topic in the booming communication engineering, proceeding the development that tends to the multifunctional EMI shielding materials. Herein, a series of carbonized syndiotactic polystyrene/carbon nanotube/MXene (CsPS/CNT/MXene) hybrid aerogels were fabricated for EMI shielding and solar thermal energy conversion purposes. To fabricate the hybrid aerogels, a porous CNT/MXene framework was initially prepared using freeze-casting. Subsequently, sPS was infused into the porous structure, followed by hyper-cross-linking and carbonization of sPS under an inert atmosphere. The resulting aerogels exhibited a distinctive egg-box structure, comprising numerous nanofibrous carbon microspheres embedded within the lamellar framework. The mass ratio between CNT and MXene was regulated to identify an optimum aerogel, that is, the CCM-4-6, which exhibited impressive properties including Young's compression modulus of 0.67 MPa, a water contact angle of 137.6 ± 4.1°, a specific surface area of 110 m2 g-1, an electrical conductivity of 43.0 S m-1, and an EMI SE value of 40 dB. Meanwhile, phase-change composites were fabricated through encapsulating paraffin wax within the hybrid aerogels. For the CCM-4-6 aerogel, a noteworthy encapsulation ratio was achieved at about 76.7%, along with remarkable latent heat, good thermal reliability, and commendable solar thermal energy conversion capacity. This study presents a facile route to prepare multifunctional EMI shielding materials.

Keywords: MXene; aerogel; carbon nanotube; electromagnetic interference shielding; solar thermal energy conversion.