Here, seven new double-complex salts, [M1(NH3)6][M2(C2O4)3] (M1, M2 = Co, Rh) and K3[Rh(NH3)6][Rh(C2O4)3]2∙6H2O types, are synthesised. The crystal structure and composition of DCS (double-complex salts) are studied by SCXRD, XRD, CHN and IR methods. The complex salts of the [M1(NH3)6][M2(C2O4)3] (M1, M2 = Co, Rh) type can be crystallised both as a crystalline hydrate [M1(NH3)6][M2(C2O4)3]·3H2O (sp. gr. P-3) and as an anhydrous complex (sp. gr. P-1) depending on the synthesis conditions. The process of [Rh(NH3)6][Rh(C2O4)3] formation is significantly dependent on the synthesis temperature. At room temperature, a mixture is formed comprising [Rh(NH3)6][Rh(C2O4)3] and K3[Rh(NH3)6][Rh(C2O4)3]2∙6H2O, while the [Rh(NH3)6][Rh(C2O4)3] target product crystallises at elevated temperatures. The thermal behaviour of double-complex salts is studied by the STA, EGA-MS, IR and XRD methods. The complete decomposition of complex salts in helium and hydrogen atmospheres resulting in metals or CoxRh1-x solid solutions is achieved at temperatures of 320-450 °C.
Keywords: complexes of cobalt and rhodium; crystal structure of complex salt; solid solution of metals; thermolysis.