Synthesis, design, in silico, in vitro and in vivo (streptozotocin-induced diabetes in mice) biological evaluation of novels N-arylacetamide derivatives

J Biomol Struct Dyn. 2023 Aug 15:1-15. doi: 10.1080/07391102.2023.2246574. Online ahead of print.

Abstract

The organic compounds 2-chloro-N-(aryl)acetamide (Ps13-Ps18) and 2-azido-N-(aryl)acetamide (148-153) were synthesized and analyzed using 1 H, 13C NMR. The acute oral toxicity study was carried out according to OECD guidelines, which approve that the compounds (Ps18 and 153) were nontoxic. In addition, the compounds were evaluated for its antidiabetic and antihyperglycemic properties (in vitro and in vivo) and for antioxidant activity by utilizing several tests as 1,1-diphenyl2-picrylhydrazyl DPPH, (2,2'-azino-bis(3-ethyl benzthiazoline-6-sulfonicacid) ABTS, reducing power test FRAP and hydrogen peroxide activity H2O2. The molecular docking studies were performed to investigate the antidiabetic activity of Ps18 and 153 and compared with the experimental results. These compounds are a potent antidiabetic from both the experimental and molecular docking results. Finally, the physicochemical, pharmacokinetic and toxicological properties of Ps18 and 153 have been evaluated by using in silico absorption, distribution, metabolism, excretion and toxicity analysis prediction.Communicated by Ramaswamy H. Sarma.

Keywords: ADMET prediction; N arylacetamide; antidiabetic; molecular docking investigations.