Exercise and fatigue: integrating the role of K+, Na+ and Cl- in the regulation of sarcolemmal excitability of skeletal muscle

Eur J Appl Physiol. 2023 Nov;123(11):2345-2378. doi: 10.1007/s00421-023-05270-9. Epub 2023 Aug 16.

Abstract

Perturbations in K+ have long been considered a key factor in skeletal muscle fatigue. However, the exercise-induced changes in K+ intra-to-extracellular gradient is by itself insufficiently large to be a major cause for the force decrease during fatigue unless combined to other ion gradient changes such as for Na+. Whilst several studies described K+-induced force depression at high extracellular [K+] ([K+]e), others reported that small increases in [K+]e induced potentiation during submaximal activation frequencies, a finding that has mostly been ignored. There is evidence for decreased Cl- ClC-1 channel activity at muscle activity onset, which may limit K+-induced force depression, and large increases in ClC-1 channel activity during metabolic stress that may enhance K+ induced force depression. The ATP-sensitive K+ channel (KATP channel) is also activated during metabolic stress to lower sarcolemmal excitability. Taking into account all these findings, we propose a revised concept in which K+ has two physiological roles: (1) K+-induced potentiation and (2) K+-induced force depression. During low-moderate intensity muscle contractions, the K+-induced force depression associated with increased [K+]e is prevented by concomitant decreased ClC-1 channel activity, allowing K+-induced potentiation of sub-maximal tetanic contractions to dominate, thereby optimizing muscle performance. When ATP demand exceeds supply, creating metabolic stress, both KATP and ClC-1 channels are activated. KATP channels contribute to force reductions by lowering sarcolemmal generation of action potentials, whilst ClC-1 channel enhances the force-depressing effects of K+, thereby triggering fatigue. The ultimate function of these changes is to preserve the remaining ATP to prevent damaging ATP depletion.

Keywords: ClC-1 channel; Force depression; Force potentiation; KATP channel; Membrane excitability; Metabolic stress.

Publication types

  • Review

MeSH terms

  • Action Potentials / physiology
  • Adenosine Triphosphate / metabolism
  • Humans
  • Ions / metabolism
  • Muscle Contraction / physiology
  • Muscle Fatigue* / physiology
  • Muscle, Skeletal* / physiology

Substances

  • Ions
  • Adenosine Triphosphate