Chitinophaga nivalis sp. nov., isolated from forest soil in Pyeongchang, Republic of Korea

Int J Syst Evol Microbiol. 2023 Aug;73(8). doi: 10.1099/ijsem.0.005981.


Rod-shaped Gram-stain-negative, aerobic bacterial strains, designated PC14 and PC15T, were isolated from a forest soil sample collected in Pyeongchang county, Gangwon-do, Republic of Korea. Strains PC14 and PC15T grew at 15-37 °C (optimum, 28-30 °C in tryptone soya agar and Mueller-Hinton agar), hydrolysed chitin and casein, and tolerated pH 8.5 and 2 % (w/v) NaCl. The strains were most closely related to members of the genus Chitinophaga, namely Chitinophaga arvensicola DSM 3695T (98.4 %), Chitinophaga longshanensis Z29T (98.3 %), Chitinophaga ginsengisegetis Gsoil 040T (97.8 %), Chitinophaga polysaccharea MRP-15T (97.8 %) and Chitinophaga niastensis JS16-4T (97.7 %). The type strain grew well on conventional commercial media in the laboratory, including tryptone soya agar, Mueller-Hinton agar, Reasoner's 2A agar, nutrient agar and Luria-Bertani agar. The major polar lipid profile comprised phosphatidylethanolamine, an unidentified aminolipid and unidentified polar lipids. The major respiratory quinone was menaquinone-7. The main fatty acids were iso-C15:0, C16:1 ω5c, C16:0 3-OH, iso-C15:0 3-OH and iso-C17:0 3-OH. The DNA G+C content of the isolated strain based on the whole genome sequence was 46.6 mol%. The average nucleotide identity and digital DNA-DNA hybridization values between strains PC14 and PC15T and the reference type strains ranged from 71.0 to 76.5 %, and from 20.3 to 20.7 %, respectively. Based on phenotypic, chemotypic and genotypic evidence, strain PC15T could be differentiated phylogenetically and phenotypically from the recognized species of the genus Chitinophaga. Therefore, strain PC15T is considered to represent a novel species, for which the name Chitinophaga nivalis sp. nov. is proposed. The type strain is PC15T (=KACC 22893T=JCM 35788T).

Keywords: Bacteroidota; Chitinophaga nivalis; Pyeongchang; forest soil; novel species.

MeSH terms

  • Agar
  • Bacterial Typing Techniques
  • Base Composition
  • DNA, Bacterial / genetics
  • Fatty Acids* / chemistry
  • Forests
  • Gammaproteobacteria*
  • Phylogeny
  • RNA, Ribosomal, 16S / genetics
  • Republic of Korea
  • Sequence Analysis, DNA


  • Agar
  • Fatty Acids
  • RNA, Ribosomal, 16S
  • DNA, Bacterial