Construction of silver-coated high translucent zirconia implanting abutment material and its property of antibacterial

Artif Cells Nanomed Biotechnol. 2023 Dec;51(1):441-452. doi: 10.1080/21691401.2023.2244013.

Abstract

High translucent zirconia (HTZ) has excellent mechanical properties, biocompatibility, and good semi-translucency making it an ideal material for aesthetic anterior dental implant abutments without antibacterial properties. In the oral environment, the surface of the abutment material is susceptible to microbial adhesion and biofilm formation, which can lead to infection or peri-implantitis and even implant failure. This study aims to promote the formation of a biological seal at the implant-soft tissue interface by modifying the HTZ surface, using the load-bearing capacity of the aluminosilicate porous structure and the broad-spectrum antibacterial effect of silver nanoparticles to prevent peri-implant bacterial infection and inflammation and to improve the success rate and prolong the use of the implant. FE-SEM (field emission scanning electron microscopes), EDS (energy dispersive spectroscopy), and XPS (X-ray photoelectron spectroscopy) results showed that aluminosilicate non-vacuum sintering can form open micro- and nanoporous structures on HTZ surfaces, and that porous aluminosilicate coatings obtain a larger number, smaller size, and more uniformly shaped silver nanoparticles than smooth aluminosilicate coatings, and could be deposited deeper in the coating. The ICP-AES (inductively coupled plasma-atomic emission spectroscopy) results showed that the early silver ion release of both the smooth silver coating and the porous silver coating was obvious, the silver ion concentration released by the former was higher than that of the latter. However, the silver ion concentration released by the porous silver coating was higher than that of the smooth coating when the release slowed down. Both smooth and porous silver coatings both inhibited E. coli (Escherichia coli), S. aureus (Staphylococcus aureus), and L. acidophilus (L. acidophilus), and porous silver coatings had stronger antibacterial properties. The silver coating was successfully constructed on the surface of HTZ, through aluminium silicate sintering and silver nitrate solution impregnation. It was found that the high concentration environment of silver nitrate solution was more advantageous for nano-Ag deposition, and the non-vacuum sintered porous surface was able to obtain a larger number of nano-Ag particles with smaller sizes. The porous Ag coating exhibited superior antibacterial properties. It was suggested that the HTZ with silver coating had clinical application, and good antibacterial properties that can improve the survival rate and service life of implants.

Keywords: Nano-Ag; aluminosilicate; antibacterial property; high translucent zirconia; implanting abutment.

MeSH terms

  • Anti-Bacterial Agents / pharmacology
  • Escherichia coli*
  • Metal Nanoparticles*
  • Silver / pharmacology
  • Silver Nitrate
  • Staphylococcus aureus

Substances

  • aluminosilicate
  • zirconium oxide
  • Silver
  • Silver Nitrate
  • Anti-Bacterial Agents