Sex differences in pre- and post-synaptic glutamate signaling in the nucleus accumbens core

Biol Sex Differ. 2023 Aug 18;14(1):52. doi: 10.1186/s13293-023-00537-4.

Abstract

Background: Glutamate signaling within the nucleus accumbens underlies motivated behavior and is involved in psychiatric disease. Although behavioral sex differences in these processes are well-established, the neural mechanisms driving these differences are largely unexplored. In these studies, we examine potential sex differences in synaptic plasticity and excitatory transmission within the nucleus accumbens core. Further understanding of baseline sex differences in reward circuitry will shed light on potential mechanisms driving behavioral differences in motivated behavior and psychiatric disease.

Methods: Behaviorally naïve adult male and female Long-Evans rats, C57Bl/6J mice, and constitutive PKMζ knockout mice were killed and tissue containing the nucleus accumbens core was collected for ex vivo slice electrophysiology experiments. Electrophysiology recordings examined baseline sex differences in synaptic plasticity and transmission within this region and the potential role of PKMζ in long-term depression.

Results: Within the nucleus accumbens core, both female mice and rats exhibit higher AMPA/NMDA ratios compared to male animals. Further, female mice have a larger readily releasable pool of glutamate and lower release probability compared to male mice. No significant sex differences were detected in spontaneous excitatory postsynaptic current amplitude or frequency. Finally, the threshold for induction of long-term depression was lower for male animals than females, an effect that appears to be mediated, in part, by PKMζ.

Conclusions: We conclude that there are baseline sex differences in synaptic plasticity and excitatory transmission in the nucleus accumbens core. Our data suggest there are sex differences at multiple levels in this region that should be considered in the development of pharmacotherapies to treat psychiatric illnesses such as depression and substance use disorder.

Keywords: Glutamate; Long-term depression; Nucleus accumbens; PKMζ; Sex differences; Synaptic plasticity.

Plain language summary

Understanding normal neural signaling within the nucleus accumbens, a key brain region involved in psychiatric disease including substance use disorder and depression, could provide insight into treatment options for these disorders. Although we know the behaviors regulated by the nucleus accumbens can differ between males and females, we do not understand the underlying differences in brain processing that could contribute to these behavioral differences. Further, even in cases when these behaviors are not different, the underlying brain signaling may exhibit sex-specific mechanisms. The current studies examined excitatory signaling with the nucleus accumbens in both rats and mice at the level of both individual cells and circuits. We found that female rodents (rats and mice) exhibit higher levels of excitatory signaling within the nucleus accumbens than male rodents. Further, procedures that can dampen neural transmission in males are not sufficient to do so in females, suggesting that excitatory signaling in the nucleus accumbens of females is less plastic. Finally, our last set of studies utilized mice missing the protein, PKMζ, and demonstrated that this reversed some of the sex differences seen in normal mice, pointing to a critical role for this protein in maintaining these differences. Our data suggest there are sex differences at multiple levels in this region that should be considered in the development of pharmacotherapies to treat psychiatric illnesses such as depression and substance use disorder.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, N.I.H., Extramural

MeSH terms

  • Animals
  • Excitatory Postsynaptic Potentials
  • Female
  • Glutamic Acid*
  • Male
  • Mice
  • Mice, Inbred C57BL
  • Mice, Knockout
  • Nucleus Accumbens*
  • Rats
  • Rats, Long-Evans
  • Sex Characteristics

Substances

  • Glutamic Acid