Advantages of residual phenol in coal chemical wastewater as a co-metabolic substrate for naphthalene degradation by microbial electrolysis cell

Sci Total Environ. 2023 Nov 25:901:166342. doi: 10.1016/j.scitotenv.2023.166342. Epub 2023 Aug 21.

Abstract

The use of co-metabolic substrates is effective for polycyclic aromatic hydrocarbons (PAHs) removal, but the potential of the high phenol concentrations in coal chemical wastewater (CCW) as a co-metabolic substrate in microbial electrolysis cell (MEC) has been neglected. In this study, the efficacy of varying phenol concentrations in comparison to simple substrates for degrading naphthalene in MEC under comparable COD has been explored. Results showed that phenol as a co-metabolic substrate outperformed sodium acetate and glucose in facilitating naphthalene degradation efficiency at 50 mg-COD/L. The naphthalene removal efficiency from RP, RA, and RG was found to be 84.11 ± 0.44 %, 73.80 ± 0.27 % and 72.43 ± 0.34 %, respectively. Similarly, phenol not only enhanced microbial biomass more effectively, but also exhibited optimal COD metabolism capacity. The addition of phenol resulted in a stepwise reduction in the molecular weight of naphthalene, whereas sodium acetate and glucose led to more diverse degradation pathways. Some bacteria with the potential ability to degrade PAHs were detected in phenol-added MEC, including Alicycliphilus, Azospira, Stenotrophomonas, Pseudomonas, and Sedimentibacter. Besides, phenol enhanced the expression of ncrA and nmsA genes, leading to more efficient degradation of naphthalene, with ncrA responsible for mediating the reduction of the benzene ring in naphthalene and nmsA closely associated with the decarboxylation of naphthalene. This study provides guidance for the effective co-degradation of PAHs in CCW with MEC, demonstrating the effectiveness of using phenol as a co-substrate relative to simple substrates in the removal of naphthalene.

Keywords: Co-metabolic substrates; Degradation pathways; Genes expression; Microbial electrolysis cell; Naphthalene; Phenol.