Peripheral immune landscape for hypercytokinemia in myasthenic crisis utilizing single-cell transcriptomics

J Transl Med. 2023 Aug 24;21(1):564. doi: 10.1186/s12967-023-04421-y.

Abstract

Background: Myasthenia gravis (MG) is the most prevalent autoimmune disorder affecting the neuromuscular junction. A rapid deterioration in respiratory muscle can lead to a myasthenic crisis (MC), which represents a life-threatening condition with high mortality in MG. Multiple CD4+ T subsets and hypercytokinemia have been identified in the peripheral pro-inflammatory milieu during the crisis. However, the pathogenesis is complicated due to the many types of cells involved, leaving the underlying mechanism largely unexplored.

Methods: We conducted single-cell transcriptomic and immune repertoire sequencing on 33,577 peripheral blood mononuclear cells (PBMCs) from two acetylcholine receptor antibody-positive (AChR +) MG patients during MC and again three months post-MC. We followed the Scanpy workflow for quality control, dimension reduction, and clustering of the single-cell data. Subsequently, we annotated high-resolution cell types utilizing transfer-learning models derived from publicly available single-cell immune datasets. RNA velocity calculations from unspliced and spliced mRNAs were applied to infer cellular state progression. We analyzed cell communication and MG-relevant cytokines and chemokines to identify potential inflammation initiators.

Results: We identified a unique subset of monocytes, termed monocytes 3 (FCGR3B+ monocytes), which exhibited significant differential expression of pro-inflammatory signaling pathways during and after the crisis. In line with the activated innate immune state indicated by MC, a high neutrophil-lymphocyte ratio (NLR) was confirmed in an additional 22 AChR + MC patients in subsequent hemogram analysis and was associated with MG-relevant clinical scores. Furthermore, oligoclonal expansions were identified in age-associated B cells exhibiting high autoimmune activity, and in CD4+ and CD8+ T cells demonstrating persistent T exhaustion.

Conclusions: In summary, our integrated analysis of single-cell transcriptomics and TCR/BCR sequencing has underscored the role of innate immune activation which is associated with hypercytokinemia in MC. The identification of a specific monocyte cluster that dominates the peripheral immune profile may provide some hints into the etiology and pathology of MC. However, future functional studies are required to explore causality.

Keywords: Innate immunity; Monocyte; Myasthenia gravis; Myasthenic crisis; Single-cell sequencing.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • CD8-Positive T-Lymphocytes
  • Cytokine Release Syndrome*
  • Humans
  • Leukocytes, Mononuclear
  • Myasthenia Gravis* / genetics
  • Transcriptome / genetics