Enhancement of the peroxidase-like activity of hollow spherical FexNi1- xS2/SC nanozymes

Dalton Trans. 2023 Sep 19;52(36):12819-12831. doi: 10.1039/d3dt01501g.

Abstract

Artificial nanozymes have been receiving considerable interest for their outstanding performance and wide application. However, their low activity results in a high concentration of substrates, costs, and environmental pollution. To enhance nanozymic activity, a composite, FexNi1-xS2/hollow carbon spheres (FexNi1-xS2/SC), was facilely synthesized by a solvothermal method. The response surface methodology (RSM) was used to optimize the Ni content in FexNi1-xS2/SC and the experimental conditions, where Fe0.75Ni0.25S2/SC exhibited the highest activity. The Km (Michaelis-Menten's constant) values of Fe0.75Ni0.25S2/SC are 0.025 and 0.021 mM with H2O2 and oxidized 3,3',5,5'-tetramethylbenzidine (TMB) as the substrates, respectively, which are 148 times and 20.5 times lower than those with HRP, 1.88 and 7.19 times lower than those of FeS2/SC, and 1.88 and 10.52 times lower than those of Fe0.8Ni0.2S2, meaning a strong affinity of Fe0.75Ni0.25S2/SC for the substrate. The catalytic efficiency (Kcat/Km) of Fe0.75Ni0.25S2/SC was 5.4 (H2O2) and 27.4 times (TMB), and 9.7 (H2O2) and 66.2 times (TMB) higher than those of FeS2/SC and Fe0.8Ni0.2S2, respectively. The effects of the synergistic interaction between Fe and Ni, the S-C bond formation, and the hollow carbon spheres on the activity were studied. A nanozymic mechanism was proposed. Fe0.75Ni0.25S2/SC could be used to detect cysteine (Cys) at room temperature in 1 min with a detection limit (LOD) of 0.049 μM.

MeSH terms

  • Benzidines*
  • Carbon
  • Catalysis
  • Hydrogen Peroxide*

Substances

  • Hydrogen Peroxide
  • 3,3',5,5'-tetramethylbenzidine
  • Benzidines
  • Carbon