Wolbachia infection at least partially rescues the fertility and ovary defects of several new Drosophila melanogaster bag of marbles protein-coding mutants

bioRxiv [Preprint]. 2023 Aug 16:2023.03.20.532813. doi: 10.1101/2023.03.20.532813.

Abstract

The D. melanogaster protein coding gene bag of marbles ( bam ) plays a key role in early male and female reproduction by forming complexes with partner proteins to promote differentiation in gametogenesis. Like another germline gene, Sex lethal , bam genetically interacts with the endosymbiont Wolbachia , as Wolbachia rescues the reduced fertility of a bam hypomorphic mutant. Here, we explored the specificity of the bam-Wolbachia interaction by generating 22 new bam mutants, with ten mutants displaying fertility defects. Nine of these mutants trend towards rescue by the w Mel Wolbachia variant, with eight statistically significant at the fertility and/or cytological level. In some cases, fertility was increased a striking 20-fold. There is no specificity between the rescue and the known binding regions of bam , suggesting w Mel does not interact with one singular bam partner to rescue the reproductive phenotype. We further tested if w Mel interacts with bam in a non-specific way, by increasing bam transcript levels or acting upstream in germline stem cells. A fertility assessment of a bam RNAi knockdown mutant reveals that w Mel rescue is specific to functionally mutant bam alleles and we find no obvious evidence of w Mel interaction with germline stem cells in bam mutants.

Author summary: Reproduction in the Drosophila melanogaster fruit fly is dependent on the bag of marbles ( bam ) gene, which acts early in the process of generating eggs and sperm. Mutations to this gene negatively impact the fertility of the fly, causing it to be sterile or have fewer progeny. Interestingly, we find that the bacteria Wolbachia , which resides within reproductive cells across a wide range of insects, partially restores the fertility and ovary phenotype of several bam mutants of which the resultant Bam protein is altered from wildtype. The protein function of Bam is further suggested to be important by the lack of rescue for a fly that has a fertility defect due to low expression of a non-mutated bam gene. Previous work makes similar conclusions about Wolbachia with another reproductive gene, Sex lethal ( Sxl ), highlighting the potential for rescue of fertility mutants to occur in a similar way across different genes. An understanding of the ways in which Wolbachia can affect host reproduction provides us with context with which to frame Wolbachia 's impact on host genes, such as bam and Sxl, and consider the evolutionary implications of Wolbachia 's infection in D. melanogaster fruit flies.

Publication types

  • Preprint