Background: Obesity and arterial stiffness are strongly associated with cardiovascular disease; however, their relationship remains controversial.
Methods: Body mass index was measured using anthropometric evaluation, and visceral fat area was calculated using an absorptiometry scan.
Results: The data of 5309 participants were collected from NHANES (National Health and Nutrition Examination Survey) (2011-2018). Based on the normal-weight normal visceral fat group that was considered as a reference, ePWV increased in all other groups, with the obese grade 2 visceral obesity group increasing the most by 26.35 cm/s (95% CI: 13.52, 39.18, P < 0.001), followed by normal-weight visceral obesity group 24.43 cm/s (95% CI: 1.88, 46.98, P = 0.035), which was even higher than obese grade 1 visceral obesity (β: 21.16, 95% CI: 9.24, 33.07, P = 0.001), obese grade 2 normal visceral fat group (β: 13.8; 95% CI: 0.10, 27.5, P = 0.048) and overweight visceral obesity group (β: 10.23; 95% CI: 1.89, 18.57, P = 0.018). For the 10-year cardiovascular risk, the obese grade 2 visceral obesity group had a 9.56-fold increase in compared with the control (OR: 10.56, 95% CI: 4.06, 27.51, P < 0.0001). Normal-weight visceral obesity, obese grade 1 visceral obesity, and overweight visceral obesity groups increased by 8.03-fold (OR: 9.03, 95% CI: 2.66, 30.69; P < 0.001), 7.91-fold (OR: 8.91, 95% CI: 3.82, 20.79, P < 0.001), and 7.28-fold (OR: 8.28, 95% CI: 3.19, 21.46, P < 0.001). The risk was lower in the normal visceral fat group. Except for the obese grade 2 normal visceral fat group, there was no significant difference in other groups.
Conclusions: Normal-weight visceral obesity was associated with higher arterial stiffness and 10-year cardiovascular risk.
Keywords: arterial stiffness; body mass index; estimated pulse wave velocity; obesity; visceral fat area.