Visible-Light-Triggered Photoswitching of Diphosphene Complexes

Angew Chem Int Ed Engl. 2023 Nov 20;62(47):e202306706. doi: 10.1002/anie.202306706. Epub 2023 Oct 19.

Abstract

Although diphosphene transition metal complexes are known to undergo E to Z isomerization upon irradiation with UV light, their potential for photoswitching has remained poorly explored. In this study, we present diphosphene complexes capable of reversible photoisomerizations through haptotropic rearrangements. The compounds [(2-κ2 P,κ6 C)Mo(CO)2 ][OTf] (3 a[OTf]), [(2-κ2 P,κ6 C)Fe(CO)][OTf] (3 b[OTf]), and [(2-κ2 P)Fe(CO)4 ][OTf] (4[OTf]) were prepared using the triflate salt [(LC )P=P(Dipp)][OTf] (2[OTf) as a precursor (LC =4,5-dichloro-1,3-bis(2,6-diisiopropylphenyl)-imidazolin-2-yl; Dipp=2,6-diisiopropylphenyl, OTf=triflate). Upon exposure to blue or UV light (λ=400 nm, 470 nm), the initially red-colored η2 -diphosphene complexes 3 a,b[OTf] readily undergo isomerization to form blue-colored η1 -complexes [(2-κ1 P,κ6 C)M(CO)n ][OTf] (5 a,b[OTf]; a: M=Mo, n=2; b: M=Fe, n=1). This haptotropic rearrangement is reversible, and the (κ2 P,κ6 C)-coordination mode gradually reverts back upon dissolution in coordinating solvents or more rapidly upon exposure to yellow or red irradiation (λ=590 nm, 630 nm). The electronic reasons for the reversible visible-light-induced photoswitching observed for 3 a,b[OTf] are elucidated by DFT calculations. These calculations indicate that the photochromic isomerization originates from the S1 excited state and proceeds through a conical intersection.

Keywords: Diphosphenes; Photoisomerization; Photoswitch; Quantum Chemical Calculations; Structure Elucidation.