Mitochondrial leak metabolism induces the Spemann-Mangold Organizer via Hif-1α in Xenopus

Dev Cell. 2023 Nov 20;58(22):2597-2613.e4. doi: 10.1016/j.devcel.2023.08.015. Epub 2023 Sep 5.

Abstract

An instructive role for metabolism in embryonic patterning is emerging, although a role for mitochondria is poorly defined. We demonstrate that mitochondrial oxidative metabolism establishes the embryonic patterning center, the Spemann-Mangold Organizer, via hypoxia-inducible factor 1α (Hif-1α) in Xenopus. Hypoxia or decoupling ATP production from oxygen consumption expands the Organizer by activating Hif-1α. In addition, oxygen consumption is 20% higher in the Organizer than in the ventral mesoderm, indicating an elevation in mitochondrial respiration. To reconcile increased mitochondrial respiration with activation of Hif-1α, we discovered that the "free" c-subunit ring of the F1Fo ATP synthase creates an inner mitochondrial membrane leak, which decouples ATP production from respiration at the Organizer, driving Hif-1α activation there. Overexpression of either the c-subunit or Hif-1α is sufficient to induce Organizer cell fates even when β-catenin is inhibited. We propose that mitochondrial leak metabolism could be a general mechanism for activating Hif-1α and Wnt signaling.

Keywords: F(1)F(o) ATP synthase; Hif-1α; LRPPRC; Spemann-Mangold Organizer; Wnt/β-catenin signaling; Xenopus; free c-subunit; hypoxia; metabolism; mitochondria.

MeSH terms

  • Adenosine Triphosphate / metabolism
  • Animals
  • Hypoxia
  • Hypoxia-Inducible Factor 1, alpha Subunit*
  • Mitochondria* / metabolism
  • Organizers, Embryonic* / metabolism
  • Xenopus laevis

Substances

  • Adenosine Triphosphate
  • Hypoxia-Inducible Factor 1, alpha Subunit