Different Modification Methods of Poly Methyl Methacrylate (PMMA) Bone Cement for Orthopedic Surgery Applications

Arch Bone Jt Surg. 2023;11(8):485-492. doi: 10.22038/ABJS.2023.71289.3330.

Abstract

In clinical practice, bone defects that occur alongside tumors, infections, or other bone diseases present significant challenges in the orthopedic field. Although autologous and allogeneic grafts are introduced as common traditional remedies in this field, their applications have a series of limitations. Various approaches have been attempted to treat large and irregularly shaped bone defects; however, their success has been less than optimal due to a range of issues related to material and design. However, in recent years, additive manufacturing has emerged as a promising solution to the challenge of creating implants that can be perfectly tailored to fit individual defects during surgical procedures. By fabrication of constructs with specific designs using this technique, surgeons are able to achieve much better outcomes for patients. Polymers, ceramics, and metals have been used as biomaterials in Orthopedic Surgery fields. Polymeric scaffolds have been used successfully in total joint replacements, soft tissue reconstruction, joint fusion, and as fracture fixation devices. The use of polymeric biomaterials, either in the form of pre-made solid scaffolds or injectable pastes that can harden in situ, shows great promise as a substitute for commonly used autografts and allografts. Polymethyl methacrylate (PMMA) is one of the most widely used polymer cement in orthopedic surgery. The present paper begins with an introduction and will then provide an overview of the properties, advantages/disadvantages, applications, and modifications of PMMA bone cement.

Keywords: Bone Cement; Infections; Modification; Orthopedic surgery; Polymethyl methacrylate (PMMA).

Publication types

  • Review