Lipids are structural building blocks of cell membranes; lipid species vary across cell organelles and across organisms. This variety results in different mechanical and structural properties in the membrane that directly impact the molecules and processes that occur at this interface. Lipid composition is dynamic and can serve to modulate cell signaling processes. Computational approaches are increasingly used to predict interactions between biomolecules and provide molecular insights to experimental observables. Molecular dynamics (MD) is a technique based on statistical mechanics that predicts the movement of atoms based on the forces that act on them. MD simulations can be used to characterize the interaction of biomolecules. Here, we briefly introduce the technique, outline practical steps for beginners who are interested in simulating lipid bilayers, demonstrate the protocol with beginner-friendly software, and discuss alternatives, challenges, and important considerations of the process. Particularly, we emphasize the relevance of using complex lipid mixtures to model a cell membrane of interest to capture the appropriate hydrophobic and mechanical environments in simulation. We also discuss some examples where membrane composition and properties modulate the interactions of bilayers with other biomolecules.