Artificial intelligence for breast cancer detection in screening mammography in Sweden: a prospective, population-based, paired-reader, non-inferiority study

Lancet Digit Health. 2023 Oct;5(10):e703-e711. doi: 10.1016/S2589-7500(23)00153-X. Epub 2023 Sep 8.

Abstract

Background: Artificial intelligence (AI) as an independent reader of screening mammograms has shown promise, but there are few prospective studies. Our aim was to conduct a prospective clinical trial to examine how AI affects cancer detection and false positive findings in a real-world setting.

Methods: ScreenTrustCAD was a prospective, population-based, paired-reader, non-inferiority study done at the Capio Sankt Göran Hospital in Stockholm, Sweden. Consecutive women without breast implants aged 40-74 years participating in population-based screening in the geographical uptake area of the study hospital were included. The primary outcome was screen-detected breast cancer within 3 months of mammography, and the primary analysis was to assess non-inferiority (non-inferiority margin of 0·15 relative reduction in breast cancer diagnoses) of double reading by one radiologist plus AI compared with standard-of-care double reading by two radiologists. We also assessed single reading by AI alone and triple reading by two radiologists plus AI compared with standard-of-care double reading by two radiologists. This study is registered with ClinicalTrials.gov, NCT04778670.

Findings: From April 1, 2021, to June 9, 2022, 58 344 women aged 40-74 years underwent regular mammography screening, of whom 55 581 were included in the study. 269 (0·5%) women were diagnosed with screen-detected breast cancer based on an initial positive read: double reading by one radiologist plus AI was non-inferior for cancer detection compared with double reading by two radiologists (261 [0·5%] vs 250 [0·4%] detected cases; relative proportion 1·04 [95% CI 1·00-1·09]). Single reading by AI (246 [0·4%] vs 250 [0·4%] detected cases; relative proportion 0·98 [0·93-1·04]) and triple reading by two radiologists plus AI (269 [0·5%] vs 250 [0·4%] detected cases; relative proportion 1·08 [1·04-1·11]) were also non-inferior to double reading by two radiologists.

Interpretation: Replacing one radiologist with AI for independent reading of screening mammograms resulted in a 4% higher non-inferior cancer detection rate compared with radiologist double reading. Our study suggests that AI in the study setting has potential for controlled implementation, which would include risk management and real-world follow-up of performance.

Funding: Swedish Research Council, Swedish Cancer Society, Region Stockholm, and Lunit.

Publication types

  • Equivalence Trial
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Artificial Intelligence
  • Breast Neoplasms* / diagnostic imaging
  • Early Detection of Cancer / methods
  • Female
  • Humans
  • Mammography* / methods
  • Prospective Studies
  • Sweden

Associated data

  • ClinicalTrials.gov/NCT04778670