NRF2 Dysregulation in Mice Leads to Inadequate Beta-Cell Mass Expansion during Pregnancy and Gestational Diabetes

bioRxiv [Preprint]. 2023 Aug 28:2023.08.28.555207. doi: 10.1101/2023.08.28.555207.

Abstract

The late stages of the mammalian pregnancy are accompanied with increased insulin resistance due to the increased glucose demand of the growing fetus. Therefore, as a compensatory response to maintain the maternal normal blood glucose levels, maternal beta-cell mass expands leading to increased insulin release. Defects in beta-cell adaptive expansion during pregnancy can lead to gestational diabetes mellitus (GDM). Although the exact mechanisms that promote GDM are poorly understood, GDM strongly associates with impaired beta-cell proliferation and with increased levels of reactive oxygen species (ROS). Here, we show that NRF2 levels are upregulated in mouse beta-cells at gestation day 15 (GD15) concomitant with increased beta-cell proliferation. Importantly, mice with tamoxifen-induced beta-cell-specific NRF2 deletion display inhibition of beta-cell proliferation, increased beta-cell oxidative stress and elevated levels of beta-cell death at GD15. This results in attenuated beta-cell mass expansion and disturbed glucose homeostasis towards the end of pregnancy. Collectively, these results highlight the importance of NRF2-oxidative stress regulation in beta-cell mass adaptation to pregnancy and suggest NRF2 as a potential therapeutic target for treating GDM.

Publication types

  • Preprint