Design, Synthesis and Anticonvulsant Activity of Cinnamoyl Derivatives of 3,4,6,7,8,9-hexahydrodibenzo[ b,d]furan-1-(2H)-one Oxime

Med Chem. 2024;20(1):92-107. doi: 10.2174/1573406419666230908121759.

Abstract

Background: Epilepsy continues to be a significant global health problem and the search for new drugs for its treatment remains an urgent task. 5-HT2 and GABAA-receptors are among promising biotargets for the search for new anticonvulsants.

Methods: New potential 5-HT2 and GABAA ligands in the series of substituted cinnamoyl derivatives of 3,4,6,7,8,9-hexahydrodibenzo[b,d]furan-1-(2H)-one oxime were designed using pharmacophore model and molecular docking analysis. The synthesis of new compounds was carried out from 3,4,6,7,8,9-hexahydrodibenzo[b,d]furan-1(2H)-one oxime and substituted cinnamoyl chlorides. The anticonvulsant activity of new substances has been established using the maximal electroshock seizure test.

Results: Several synthesized substituted cinnamoyl derivatives of 3,4,6,7,8,9-hexahydrodibenzo [b,d]furan-1-(2H)-one oxime significantly reduced the severity of convulsive manifestations and completely prevented the death of animals after MES. The structure-activity relationship was investigated. The most effective compound was found to be GIZH-348 (1g) (3,4,6,7,8,9-hexahydrodibenzo[ b,d]furan-1(2Н)-one О-(4-chlorophenyl)acryloyl)oxime) at the doses of 10-20 mg/kg.

Conclusion: Molecular and pharmacophore modelling methods allowed us to create a new group of substituted cinnamoyl derivatives of 3,4,6,7,8,9-hexahydrodibenzo[b,d]furan-1-(2H)-one oxime with anticonvulsant activity.

Keywords: Anticonvulsant; MES test; cinnamoyl derivatives.; dibenzofuranes; docking studies; oximes.

MeSH terms

  • Animals
  • Anticonvulsants* / pharmacology
  • Anticonvulsants* / therapeutic use
  • Electroshock
  • Epilepsy* / drug therapy
  • Molecular Docking Simulation
  • Oximes / pharmacology
  • Pentylenetetrazole / therapeutic use
  • Seizures / chemically induced
  • Seizures / drug therapy
  • Structure-Activity Relationship

Substances

  • Anticonvulsants
  • Oximes
  • Pentylenetetrazole