Bromine-Enhanced Generation and Epoxidation of Ethylene in Tandem CO2 Electrolysis Towards Ethylene Oxide

Angew Chem Int Ed Engl. 2023 Oct 26;62(44):e202311570. doi: 10.1002/anie.202311570. Epub 2023 Sep 20.

Abstract

The indirect electro-epoxidation of ethylene (C2 H4 ), produced from CO2 electroreduction (CO2 R), holds immense promise for CO2 upcycling to valuable ethylene oxide (EO). However, this process currently has a mediocre Faradaic efficiency (FE) due to sluggish formation and rapid dissociation of active species, as well as reductive deactivation of Cu-based electrocatalysts during the conversion of C2 H4 to EO and CO2 to C2 H4 , respectively. Herein, we report a bromine-induced dual-enhancement strategy designed to concurrently promote both C2 H4 -to-EO and CO2 -to-C2 H4 conversions, thereby improving EO generation, using single-atom Pt on N-doped CNTs (Pt1 /NCNT) and Br- -bearing porous Cu2 O as anode and cathode electrocatalysts, respectively. Physicochemical characterizations including synchrotron X-ray absorption, operando infrared spectroscopy, and quasi in situ Raman spectroscopy/electron paramagnetic resonance with theoretical calculations reveal that the favorable Br2 /HBrO generation over Pt1 /NCNT with optimal intermediate binding facilitates C2 H4 -to-EO conversion with a high FE of 92.2 %, and concomitantly, the Br- with strong nucleophilicity protects active Cu+ species in Cu2 O effectively for improved CO2 -to-C2 H4 conversion with a FE of 66.9 % at 800 mA cm-2 , superior to those in the traditional chloride-mediated case. Consequently, a single-pass FE as high as 41.1 % for CO2 -to-EO conversion can be achieved in a tandem system.

Keywords: Bromine Mediation; CO2 Reduction; Electrocatalysis; Ethylene Epoxidation; Tandem Design.