Mutations in the NADH dehydrogenase (ubiquinone reductase) iron‑sulfur protein 4 (NDUFS4) gene, which encodes for a key structural subunit of the OXFOS complex I (CI), lead to the most common form of mitochondrial disease in children known as Leigh syndrome (LS). As in other mitochondrial diseases, epileptic seizures constitute one of the most significant clinical features of LS. These seizures are often very difficult to treat and are a sign of poor disease prognosis. Mice with whole-body Ndufs4 KO are a well-validated model of LS; they exhibit epilepsy and several other clinical features of LS. We have previously shown that mice with Ndufs4 KO in only GABAergic interneurons (Gad2-Ndufs4-KO) reproduce the severe epilepsy phenotype observed in the global KO mice. This observation indicated that these mice represent an excellent model of LS epilepsy isolated from other clinical manifestations of the disease. To further characterize this epilepsy phenotype, we investigated seizure susceptibility to selected exogenous seizure triggers in Gad2-Ndufs4-KO mice. Then, using electrophysiology, imaging, and immunohistochemistry, we studied the cellular, physiological, and neuroanatomical consequences of Ndufs4 KO in GABAergic interneurons. Homozygous KO of Ndufs4 in GABAergic interneurons leads to a prominent susceptibility to exogenous seizure triggers, impaired interneuron excitability and interneuron loss. Finally, we found that the hippocampus and cortex participate in the generation of seizure activity in Gad2-Ndufs4-KO mice. These findings further define the LS epilepsy phenotype and provide important insights into the cellular mechanisms underlying epilepsy in LS and other mitochondrial diseases.
Keywords: Epilepsy; Excitability; GABAergic interneuron; Ndufs4; Seizures; hippocampus.
Copyright © 2023. Published by Elsevier Inc.