A general protocol for precise syntheses of ordered mesoporous intermetallic nanoparticles

Nat Protoc. 2023 Oct;18(10):3126-3154. doi: 10.1038/s41596-023-00872-1. Epub 2023 Sep 14.

Abstract

Intermetallic nanomaterials consist of two or more metals in a highly ordered atomic arrangement. There are many possible combinations and morphologies, and exploring their properties is an important research area. Their strict stoichiometry requirement and well-defined atom binding environment make intermetallic compounds an ideal research platform to rationally optimize catalytic performance. Making mesoporous intermetallic materials is a further advance; crystalline mesoporosity can expose more active sites, facilitate the mass and electron transfer, and provide the distinguished mesoporous nanoconfinement environment. In this Protocol, we describe how to prepare ordered mesoporous intermetallic nanomaterials with controlled compositions, morphologies/structures and phases by a general concurrent template strategy. In this approach, the concurrent template used is a hybrid of mesoporous platinum or palladium and Korea Advanced Institute of Science and Technology-6 (KIT-6) (meso-Pt/KIT-6 or meso-Pd/KIT-6) that can be transformed by the second precursors under reducing conditions. The second precursor can either be a second metal or a metalloid/non-metal, e.g., boron/phosphorus. KIT-6 is a silica scaffold that is removed using NaOH or HF to form the mesoporous product. Procedures for example catalytic applications include the 3-nitrophenylacetylene semi-hydrogenation reaction, p-nitrophenol reduction reaction and electrochemical hydrogen evolution reaction. The synthetic strategy for preparation of ordered mesoporous intermetallic nanoparticles would take almost 5 d; the physical characterization by electron microscope, X-ray diffraction and inductively coupled plasma-mass spectrometry takes ~2 days and the function characterization depends on the research question, but for catalysis it takes 1-5 h.

Publication types

  • Review
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Hydrogen
  • Nanoparticles*
  • Nanostructures*
  • Platinum / chemistry
  • Silicon Dioxide / chemistry

Substances

  • Silicon Dioxide
  • Hydrogen
  • Platinum