Auditory cortical neurons modify their response profiles in response to numerous external factors. During task performance, changes in primary auditory cortex (A1) responses are thought to be driven by top-down inputs from the orbitofrontal cortex (OFC), which may lead to response modification on a trial-by-trial basis. While OFC neurons respond to auditory stimuli and project to A1, the function of OFC projections to A1 during auditory tasks is unknown. Here, we observed the activity of putative OFC terminals in A1 in mice by using in vivo two-photon calcium imaging of OFC terminals under passive conditions and during a tone detection task. We found that behavioral activity modulates but is not necessary to evoke OFC terminal responses in A1. OFC terminals in A1 form distinct populations that exclusively respond to either the tone, reward, or error. Using tones against a background of white noise, we found that OFC terminal activity was modulated by the signal-to-noise ratio (SNR) in both the passive and active conditions and that OFC terminal activity varied with SNR, and thus task difficulty in the active condition. Therefore, OFC projections in A1 are heterogeneous in their modulation of auditory encoding and likely contribute to auditory processing under various auditory conditions.
Keywords: auditory cortex; behavior; orbitofrontal cortex; signal-to-noise ratio; top-down.
Copyright © 2023 Elsevier Inc. All rights reserved.