The development of portable and cost-effective sensing system for Hg2+ quantitation is highly demanded for environmental monitoring. Herein, an on-site, rapid and portable smartphone readout device based Hg2+ sensing system integrating nitrogen-doped carbon quantum dots (NCDs) modified paper strip was proposed, and the physicochemical properties of NCDs were characterized by high resolution TEM, FTIR, UV-vis absorption spectrum and fluorescence spectral analysis. The modified paper strip was prepared via "ink-jet" printing technology and exhibits sensitive fluorescence response to Hg2+ with fluorescence color of bright blue (at the excitation/emission wavelength of 365/440 nm). This portable smartphone-based sensing platform is highly selective and sensitive to Hg2+ with the limit of detection (LOD) of 10.6 nM and the concentration range of 0-130 nM. In addition, the recoveries of tap water and local lake water were in the range of 89.4% to 109%. The cost-effective sensing system based on smartphone shows a great potential for trace amounts of Hg2+ monitoring in environmental water samples.
Keywords: Carbon quantum dots; Hg (II); Paper-based sensor; Smartphone; “Ink-jet” printing.
© 2023. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.