Efficient CO2 Electroreduction to Multicarbon Products at CuSiO3/CuO Derived Interfaces in Ordered Pores

Adv Mater. 2024 May;36(22):e2305508. doi: 10.1002/adma.202305508. Epub 2023 Nov 16.

Abstract

Electrochemical CO2 conversion to value-added multicarbon (C2+) chemicals holds promise for reducing CO2 emissions and advancing carbon neutrality. However, achieving both high conversion rate and selectivity remains challenging due to the limited active sites on catalysts for carbon-carbon (C─C) coupling. Herein, porous CuO is coated with amorphous CuSiO3 (p-CuSiO3/CuO) to maximize the active interface sites, enabling efficient CO2 reduction to C2+ products. Significantly, the p-CuSiO3/CuO catalyst exhibits impressive C2+ Faradaic efficiency (FE) of 77.8% in an H-cell at -1.2 V versus reversible hydrogen electrode in 0.1 M KHCO3 and remarkable C2H4 and C2+ FEs of 82% and 91.7% in a flow cell at a current density of 400 mA cm-2 in 1 M KOH. In situ characterizations and theoretical calculations reveal that the active interfaces facilitate CO2 activation and lower the formation energy of the key intermediate *OCCOH, thus promoting CO2 conversion to C2+. This work provides a rational design for steering the active sites toward C2+ products.

Keywords: active interfaces; electrochemical CO2 reduction; multicarbon products; ordered porous oxides.