De novo domestication: a new way for crop design and breeding

Yi Chuan. 2023 Sep 20;45(9):741-753. doi: 10.16288/j.yczz.23-194.

Abstract

The impending global climate change presents significant challenges to agricultural production. It is imperative to find approaches to ensure sustained growth in food production while reducing agricultural input, in order to meet the needs of worldwide people for nutritious food supply. One of the effective strategies to address this challenge is still the development of new crop varieties with high yield, stable yield, environmental friendliness and rich nutrition. The creation of new crop cultivars depends largely on the expansion of genetic resources and the innovation of breeding techniques. De novo domestication is an innovative breeding strategy for developing new crop varieties. It involves utilizing undomesticated or semi-domesticated plants with desirable traits as founder species for breeding. The process involves rapid domestication of wild plants through the redesign of agronomic traits and the introduction of domestication genes to meet diverse human needs. In this review, we overview the history of crop domestication and genetic improvement, clarify the necessity of enriching crop diversity, and emphasize the significance of wild plants' genetic diversity in expanding the scope for crop redesign. Breeding strategy innovation is the key to accelerate crop breeding. We also discuss the feasibility and prospects of rapid developing new crops through de novo domestication.

全球气候变化对农业生产带来了巨大挑战。在农业投入减少的前提下如何保障粮食生产持续稳步增长,满足人们吃饱、吃好的需求是亟需考虑的问题。培育高产、稳产、绿色、营养的新型作物品种仍然是解决该挑战的有效措施之一。作物新品种的培育高度依赖育种材料遗传多样性的拓宽和育种技术的创新。从头驯化是一种作物品种创新的全新育种策略,以具有某些优异性状的未驯化、半驯化植物作为底盘物种,通过农艺性状重新设计和驯化基因导入实现野生植物快速驯化,从而满足人类多样化需求。本文回顾了作物驯化、遗传改良历程,阐明了丰富作物多样性的必要性,强调野生植物丰富的遗传多样性对于拓展作物重新设计空间的重要价值,提出育种策略革新是加速作物育种的关键,探讨了通过从头驯化快速培育新型作物品种的可行性和发展前景。.

Keywords: crop diversity; de novo domestication; novel crop varieties; wild resources.

Publication types

  • Review

MeSH terms

  • Agriculture
  • Crops, Agricultural / genetics
  • Domestication*
  • Humans
  • Phenotype
  • Plant Breeding*