The black soldier fly (BSF) is well known for its ability to biologically convert organic waste into insect biomass, including protein and oil, which can be utilised as animal feed. Since raw BSF products, such as BSF powder, are difficult to differentiate from other biological raw materials, therefore new analytical approaches are required. In this study, we have developed a new and fast method based on loop-mediated isothermal AMPlification (LAMP) reaction that can diagnose black soldier fly larvae and BSF byproducts with high accuracy, specificity and sensitivity. Species-specific primers for BSF were designed based on targeting the mitochondrial cytochrome C oxidase I (COI) gene. The assay was able to detect as low as 820 fg/L of BSF DNA in 60 min at 65 °C, which was a hundredfold higher than the detection limit of classical polymerase chain reaction and did not show cross-reactivity. In conclusion, the LAMP assay demonstrated excellent sensitivity and specificity to detect BSF and BSF byproducts, with a sampling-to-result identification time of 60 min.
Keywords: Black Soldier Fly; bioconversion; loop-mediated isothermal amplification; organic waste.