A programmable ferrofluidic droplet robot

Eur Phys J E Soft Matter. 2023 Sep 26;46(9):87. doi: 10.1140/epje/s10189-023-00348-w.

Abstract

Soft miniature robots have wide potential applications in lab-on-a-chip and biomedical sciences due to their deformability, safety, and remarkable controllability. However, current ferrofluidic droplet robots have some problems, such as easy broken, limited motion range and high energy consumption. Therefore, the objective of this study is to propose a programmable ferrofluidic flexible droplet robot (PFDR) with control strategies for elongation, splitting and merging behaviors by designing an actuation system consisting of a row of electromagnets and a robotic arm or a coordinate robot. The PFDR can not only deform actively to prevent itself from breaking, but also deform passively to fit the profile of channels or tubes to move efficiently. The actuation system can make PFDR have larger motion range as well as lower energy consumption. The design concept and the operating principle of PFDR are presented. The magnetic actuation system is developed. The lag of PFDR is analyzed in theoretical and experimental ways. The splitting and merging behaviors are investigated and other functionalities are studied as well.