Continuous Monitoring of Entropy Production and Entropy Flow in Humans Exercising under Heat Stress

Entropy (Basel). 2023 Sep 3;25(9):1290. doi: 10.3390/e25091290.

Abstract

Complex living systems, such as the human organism, are characterized by their self-organized and dissipative behaviors, where irreversible processes continuously produce entropy internally and export it to the environment; however, a means by which to measure human entropy production and entropy flow over time is not well-studied. In this article, we leverage prior experimental data to introduce an experimental approach for the continuous measurement of external entropy flow (released to the environment) and internal entropy production (within the body), using direct and indirect calorimetry, respectively, for humans exercising under heat stress. Direct calorimetry, performed with a whole-body modified Snellen calorimeter, was used to measure the external heat dissipation from the change in temperature and relative humidity between the air outflow and inflow, from which was derived the rates of entropy flow of the body. Indirect calorimetry, which measures oxygen consumption and carbon dioxide production from inspired and expired gases, was used to monitor internal entropy production. A two-compartment entropy flow model was used to calculate the rates of internal entropy production and external entropy flow for 11 middle-aged men during a schedule of alternating exercise and resting bouts at a fixed metabolic heat production rate. We measured a resting internal entropy production rate of (0.18 ± 0.01) W/(K·m2) during heat stress only, which is in agreement with published measurements. This research introduces an approach for the real-time monitoring of entropy production and entropy flow in humans, and aims for an improved understanding of human health and illness based on non-equilibrium thermodynamics.

Keywords: calorimetry; entropy monitoring; entropy production; exercise stress; heat flow.