Rheumatoid arthritis (RA) and osteoarthritis (OA) have a significant impact on the quality of life of patients around the world, causing significant pain and disability. Furthermore, the drugs used to treat these conditions frequently have side effects that add to the patient's burden. Photobiomodulation (PBM) has emerged as a promising treatment approach in recent years. PBM effectively reduces inflammation by utilizing near-infrared light emitted by lasers or LEDs. In contrast to photothermal effects, PBM causes a photobiological response in cells, which regulates their functional response to light and reduces inflammation. PBM's anti-inflammatory properties and beneficial effects in arthritis treatment have been reported in numerous studies, including animal experiments and clinical trials. PBM's effectiveness in arthritis treatment has been extensively researched in arthritis-specific cells. Despite the positive results of PBM treatment, questions about specific parameters such as wavelength, dose, power density, irradiation time, and treatment site remain. The goal of this comprehensive review is to systematically summarize the mechanisms of PBM in arthritis treatment, the development of animal arthritis models, and the anti-inflammatory and joint function recovery effects seen in these models. The review also goes over the evaluation methods used in clinical trials. Overall, this review provides valuable insights for researchers investigating PBM treatment for arthritis, providing important references for parameters, model techniques, and evaluation methods in future studies.
Keywords: animal arthritis models; anti-inflammation; clinic trials; osteoarthritis; photobiomodulation; rheumatoid arthritis.