Optical Properties of ScnYn (Y = N, P As) Nanoparticles

Nanomaterials (Basel). 2023 Sep 19;13(18):2589. doi: 10.3390/nano13182589.


In this work, using Density Functional Theory (DFT) and Time Dependent DFT, the absorption spectrum, the optical gap, and the binding energy of scandium pnictogen family nanoparticles (NPs) are examined. The calculated structures are created from an initial cubic-like building block of the form Sc4Y4, where Y = N, P, As after elongation along one and two perpendicular directions. The existence of stable structures over a wide range of morphologies was one of the main findings of this research, and this led to the study of several exotic NPs. The absorption spectrum of all the studied structures is within the visible spectrum, while the optical gap varies between 1.62 and 3 eV. These NPs could be used in the field in photovoltaics (quantum dot sensitized solar cells) and display applications.

Keywords: DFT; exotic nanoparticles; optical properties; scandium pnictogen.

Grants and funding

This research received no external funding.