Objective: Pre-operative lumbar spine MRI is usually acquired with the patient supine, whereas lumbar spine surgery is most commonly performed prone. For MRI to be used reliably and safely for intra-operative navigation for foraminal and extraforaminal decompression, the magnitude of dorsal root ganglion (DRG) displacement between supine and prone positions needs to be understood.
Methods: A prospective study of a degenerative lumbar spine cohort of 18 subjects indicated for lumbar spine surgery. Three-dimensional T2-weighted fast spin echo and T1-weighted spoiled gradient echo sequences were acquired at 3 T. Displacement and cross-sectional area (CSA) of the bilateral DRGs at 5 motion levels (L1-2 to L5-S1) were determined via 3D segmentation by 2 independent evaluators. Wilcoxon rank-sum tests without correction for multiple comparison were performed against hypothesized 1-mm absolute displacement and corresponding 24% CSA change.
Results: DRG mean absolute displacement was <1 mm (p > 0.99, mean = 0.707 mm, 95% confidence interval (CI) = 0.659 to 0.755 mm), with the largest directional displacement in the dorsal-to-ventral direction from supine to prone (mean = 0.141 mm, 95% CI = 0.082 to 0.200 mm). Directional displacements caudal-to-cephalad were 0.087 mm (95% CI = 0.022 to 0.151 mm), and left-right were -0.030 mm (95%CI = -0.059 to -0.001 mm). Mean CSA change was within 24% (p > 0.99, mean = -8.30%, 95% CI = -10.5 to -6.09%). Mean absolute displacement was largest for the L1 (mean = 0.811 mm) and L2 (mean = 0.829 mm) DRGs.
Conclusions: Minimal, non-statistically significant soft tissue displacement and morphological area differences were demonstrated between supine and prone positions during 3D lumbar spine MRI.
Keywords: 3D MRI; Dorsal root ganglion; Lumbar spine.
Copyright © 2023 Elsevier Inc. All rights reserved.