Purpose: To evaluate different approaches for the effective assessment of pulmonary perfusion with a pseudo-continuous arterial spin labeled (pCASL) MRI.
Materials and methods: Four different approaches were evaluated: 1) Cardiac-triggered inferior vena cava (IVC) labeling; 2) IVC labeling with cardiac-triggered acquisition; 3) Right pulmonary artery (RPA) labeling with cardiac-triggered acquisition; and 4) Cardiac-triggered RPA labeling with background suppression (BGS). Each approach was evaluated in 5 healthy volunteers (n = 20) using coefficient of variation (COV) across averages. Approach 4 was also compared against a flow alternating inversion recovery (FAIR).
Results: The IVC labeling (Approach 1) achieved perfusion-weighted images of both lungs, although this approach was more sensitive to variations in heart rate. Cardiac-triggered acquisitions using IVC (Approach 2) and RPA (Approach 3) labeling improved signal consistencies, but were incompatible with BGS. The cardiac-triggered RPA labeling with BGS (Approach 4) achieved a COV of 0.34 ± 0.03 (p < 0.05 compared to IVC labeling approaches) and resulted in perfusion value of 434 ± 64 mL/100 g/min, which was comparable to 451 ± 181 mL/100 g/min measured by FAIR (p = 0.82).
Discussion: Pulmonary perfusion imaging using pCASL-MRI is highly sensitive to cardiac phase, and requires approaches to minimize flow-induced signal variations. Cardiac-triggered RPA labeling with BGS achieves reduced COV and enables robust pulmonary perfusion imaging.
Keywords: ASL; Lung; Perfusion; Pulmonary; pCASL.
Copyright © 2023 Elsevier Inc. All rights reserved.